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RESPONSE

By

.

OF AIRCRAFT IN GUSTS

John C. Houbolt

‘suMMARY

A systematic procedure is developed for the calculation of the
structural response of aircraft flying throu-gha gust by use of differ-
ence equations and matrix notation. The use of difference equations in
the solution of dynamic problems is first illustrated by means of a
simple-damped-oscillatorexample. A detailed analysis is then given
which leads to a recurrence matrix equation for the determination of
the response of an airplane in a gust. The’method takes into account
wing bending and twisting deformations, fuselage deflection, vertical
and pitching motion of the airplane, and some tail forces. The method
is based on aerodynamic strip theory, but compressibilityand three-
dimensional aerodynamic,effects can be taken into account approximately

‘ by means of over-all corrections. Either a sharp-edge gust or a gust
of arbitrary shape in the spanwise or flight directions may be treated.
In order to aid in the application of the method to any specific case,
a suggested computationalprocedure is included.

The possibilities of applying the method to a variety ’oftransient
aircraft problems, such as landing, are brought out. A brief review of
matrix algebra, covering the extent to which it is used in the analysis,
is also included.

INTRODUCTION ,

In the problem of an airplane flying through gusts, accurate .
predictions of stresses are not always obtained if the interaction
between aerodynamic loads and structural deformations is not considered.
The present paper gives a method for determining the dynamic response
of aircraft in gusts in which this interaction is considered. An -
approach is employed which is a departure from the usual modal type of
solution. The time derivatives in the integro-differential.equations
of motion of the airplane are replaced by appropriate difference.
expressions and use is made of matrix notation to express conveniently
the conditions of equilibrium at a number of points along the wing sps+.

,.
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.-6 *-–
. . .

‘2 ‘ NACA TN 2060 .

The result is a systematic procedure which is complete and general in
fOrm. The airplane is assumed to be free to translate and pitch. Wing
bending, wing twist, and fuselage flexibility are all included. Tail
forces due to vertical motion, angle of attack, and gust penetration are
also included in the snalysis.

With the method, a gust with any gradient in the direction of
flight or along the span may be treated without difficulty. The method
~is based on aerodynamic strip theory,’but over-all compressibilityand
aspect-ratio correctionsmay be included without difficulty, if desired.
One such over-all correction is indicated.

b the first part of the paper the method of using difference
equations in the solution of &@amic problems is illustrated by an
example in which the transient response of a simple oscillator is
determined. The analysis for the determination of the response of an
airplane in a gust is then given. ~ the following section a computa-
tional procedure is suggested. This section is not intended to
describe or add to the understanding of the analysis, but by following
the directions indicated, the response of any airplane may be found
without following through the complete details of the analysis.

Supplementary definitions and derivations are presented in appen-
dixes. Appendix A summarizes the various matrix coefficients and
matrices that are used in the anslysisj appendix B gives a derivation
of the difference equations, appendix C gives a derivation of the
flexibility matrices, appendix D gives a derivation of a recurrence
equation for evaluating the form of Duhsmells integral which involves
an exponential kernel, and appendix E presents a review of the funda-
mentals of matrix algebra. It is suggested that those not.fsd.liar “
with matrix algebra read appendix E before reading the saslysis.

SYMBOLS

.

a distance between leading edge of wing and elastic axis

al coefficient used in unsteady lift function for sudden change
in angle of attack

A aspect ratio of wing

4“ aspect ratio of horizontal tail

b semispan of wing

c“ chord of wing
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‘1

‘2

m

chord at wing midspan

midspan chord of tail

mean aerodynamic chord of tail

distance between mass center of wing cross section and
elastic sxis of wing; positive when elastic axis lies
forward of mass center

Young’s modulus of elasticity

suddenly applied force

shear modulus of elasticity

integers 0, 1, 2, 3, 4, and 5 used to designate stations
(for most part usedas parenthetical numbers, that is, w(3)
is deflection at station 3)

bending moment of inertia

torsional stiffness constant
.

radius ofgyration of wing mass about elastic axis or
elastic spring constant

length of section associated with a spanwise station

aerodynamic lift over interval Z on wing

shear force transmitte~to wing by fuselage

aerodynamic lift over interval Z on wing due to gust .

one:half aerodynamic lift on tail due to gust

one-half total aerodynamic lift on tail

part of aerodynamic lift over interval Z on wing (see
equation (16))

part of aerodynamic lift over interval Z on wing (see
equation (17))

mass of beam included in interval Z or concentratedmass
in spring oscillator

.... .. ... -—-.. .. .—.----— —.— .—-... -—— .—. .—.——-. —.. .~—. .—— ... .— .— .-. . ___ .. _.
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‘f’ec’ (m+*)m

mA

mass m includi& apparent mass

assumed over-all compressibility

fo.ting(, ,41%)

assumed over-all compressibilityy

and aspect-ratio correction

‘At end aspect-ratio correction

mass moment me including apparent mass

“’ec’(me+%%-.:))
mass of fuselage per unit.lengthmf

–**

. . .

including apparent mass

)
Yrp2c4
m,

over interval Z about
.

.ass polar moment of inertia &

effects
(~ +%%-:r+

Mach nuuiberor aerodynamic-moment
elastic axis of wing

moment transmitted to wing by fuselageMf

n. integers 0, 1, 2, 3, and so forth to designate nu.~r of t~
intervals passed .

.

normal load acting at a station

fuselage inertia loading per unit lengthPf

torsional load acting at a station

distance traveled by wing in half-chords
(
~t, where midspsn

chord co )
is used as reference chord ‘

As

horizontal-tail area .

time, zero”at beginning

St

t, T of gust penetration

-—— —..——
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w

w-f

W1

x

x~

Xt

, Y

z

c%

P

.J3t

7

fofiard velocity of-flight

vertical velocity of gust

deflection of elastic axis of wing, positive upward, or
deflection of mass oscillator

deflection of fuselage, positive upward

fuselage modal function; zero at wing elastic sxis and unity
at tail one-quarter-chordlocation

distance along fuselage measured from wing elastic axis,
positive in resrward direction -

distance from foremost part of nose to elastic axis

distance from elastic axis to one+xarter-chord location on ,
tail

distance slong wing measured from center of airplane

ratio of dynsmic deflection to static deflection

angle of attack of horizontal tail
.

forward-speed and aspect-ratio factor for wing (mAfipU)or
coefficient of damping for spring oscillator

(forward-speed and ”aspect-ratiofaCtOr fO17tail ~mAtfiPStU
)

exponential coefficient in O function associated with

time t, (y = ~ ‘)

coefficient of fuselage modal function

time intervsl’:

exponential coefficient’in @ function associated with
variable’ s

dimensionless interval.between i - 1 and i
stations (X.ib is actual length)

mass density of air

angle of twist of wing, positive in stalling direction
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function which denotes growth of lift on rigid airfoil
entering sharp-edge gust (used without subscript to
indicate function for wing and with subscript t used
to indicate function for tail)

natural frequency associated with WI, radians per second

unit-step function

function which denotes growth of lift on airfoil following
sudden change in angle of attack (used without subscript
to indicate function for wing snd with subscript t used
to indicate function for tail)

square matrix

rectangular matrix

column matrix

row matrix

Subscripts:
.

t tail

0,1,2,3, ... n number of time inter~s passed

0,1,2,3,4,~ or i station (however, station is usually given as
parenthetical number, such as w(3) for deflection
at station 3); i is also used as general subscript
in appendix A

All the terms, coefficients, and matrices not defined in this
section are defined in appendix A.

Dots are used to indicate derivatives with respect to time; for

.

ANALYSIS

Transient Response of a Simple Dsmped Oscillator

h order to illustrate the use of difference equations and to test
the accuracy of the procedure that is to be used in the solution of the

— ..— ——. —.—— —--- -.
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more complicated gust problems, the solubion of a simple problem having
a known analytical solution is first presented. The problem is to com-
pute the response of the damped oscillator shown in figure 1 to a
suddenly applied force. The differential equation of motion of this
system due to the suddenly applied force is

By use of difference equtions this differential equation may be trans-
formed into an equation which involves deflection ordinatesat several
successive values of time. Rrobably the most commonly used”difference
equations are the following (see appendix B for derivation):

‘n+l - ‘n-ltin=
2C ‘ (2)

‘n+l - 2wn + wn-~
Wn=. (3)~2

.
which give the derivatives at the intermediate of three successive
ordinates. Although these equations are quite adequate for the
oscillator problem of the present paper, they cannot be used in the
gUSt ~dySiS which fOllOWs. Rather, for reasons which are brought out
in a subsequent part of the analysis, equations that give the derivatives
at the end ordinate of several successive ordinates must be used. If
only three successive ordinates are-used, the derivatives so found are
not accurate enough to be useful. If a fourth ordinate is added,how-
ever, derivatives may be taken at the end ordinate with accuracies
which are comparable to those givenby equations (2) and (3). Such
derivatives are derived also in appendix B and are given by the
equations:

fin=

Wn =

llwn - 18wn-1 + 9wn-2 - 2wn-3

6G (4)

2wn - 5Wn.1 + kwn+ - Wn_~
(5)

Although either equations.(2) and (3) or equations (4) and (~) maybe
used in the solution of this oscillator problem, only equations,(4.)
and (5) will be used, since only these equations can be used in the
gust-problem solution presented in this paper.

r

. . ... . .- -- .- —.....— .— -.,___ . . -. ..... .. ______ —.———— .__—.-_. _—. . .._ __— -—



8 NACA TN 2060

If the derivatives in
equations (4) and (3), the

equation (1) are replaced by the difference
following equation is obtained:

( ‘Jk+~ &j)Wn= (~ +*)..-, ‘~ ‘*).n-2 ‘~+~w.-~ ‘~
2+~m m

(6)

This equation may be said to be the difference equation of motion. If
the more’general case of a variable applied force were being considered,
the factor F in this equation would be replaced by Fn, the value of
the force

Ha

G = 0.01,

to static

present at the-time t = nc.

~ =400,&-=2,specific case is now considered, in which ~

F = 1, sad the notation z = w
.F~ (

ratio of dynamic deflection

deflection) is used, equation (6) becomes

Zn = 0.018927 + 2.42272 Zn-l - 1.92114 Zn-2 + 0.47949 zn-3 (7)

This equation may be regarded as a recurrence formula; the value in
may be interpreted as the deflection to come and may be found easily
from the three preceding deflections zn-l) zn-2j SJMI zn-3. Then with ‘

“

the newly found value zn- and with Zn-l and zn-2, the next deflec-

tion can be found, and so on. This process thus gives a step-by-step .(

derivation of the time history of deflection and may be carried out as
far as is desired. Of course the process must start with known initial
values of z. These values canbe found with the aid of the initial
conditions of the problem by means of the following approach.

The difference equations for the first and second derivatives at
the third ordinate of four successive ordinates are (see appendix B)

(‘in=*Ean+l+?n- ‘n-l +‘n-2)
tin “(=-L Wn+l )- 2Wn + Wn-l

~2 \

E these equations are taken to apply at t = O (n = O), they become .
.

*

c1

.— ——.. - .- —.— —— —.--—
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$0 1 (‘>wl )- 2W0 + w-l

(8)

(9)
.

For the problem uader consideration the primary initial conditions are ~.
that, at t = 0, the displacement and velocity are zero. By use of
equation (1) or by reasoning from Newtonts eecond law, a secondary
initial condition can be established; that is, the acceleration
immediately following the application of the unit force must be l/m.
In equation form these conditions are

W()=o

+0=0

By substitution of these values into equations (8) and (9) and by use
w

of the notation
“m’

the following relations can be found to exist

between the ordinates:’

20=0

1’

=-2 = 0.24 - 821 ‘

(

(lo)
.

z-l =0.04 - z~
J

Substitution of these values into equation (7), with n set equal to 1,
gives an equation from which z1, the deflection at t . e, may be
evaluated. Three successive deflections c= now be established: the
deflection at t = e, the zero’deflection at. t = O, and a fictitious
deflection for t = -e givenby equation (10). tithe real problemno
deflection exists for t less than zero; the assumption that a deflec-
tion does exist before t is zero is simply a means for allowing the
recurrence formula, equation (7), to apply at the origin as well as at
later values of time. Furthermore, no violation is made of the condi-
tions under consitirationbecause, mathematically, the response
after t = O is not influenced by the response that may exist
before t = O, sb long as the initial conditions are satisfied. The
process just described for treating the initial conditions is actually
not different from the procedure commonly employed in difference-
equation approaches, in which exterior points near a region under con-
sideration are written in terms of the interior points by means of the
boundary conditions.

-——... . .. ...— —._. .. ... . . ..——.- .-.————__.——_—_—— ...—.—_____ .—.-—-.—.. — .—-.—



10 NACA TN 2060

With the initial values of deflection thus established the step-
by-step evaluation of succeeding deflections proceeds in a straight-
forward manner; that is, equation (7) is now ev~uated for n = 2Y
then for n = 3, and so on. The ’responseof the oscillator for the
physical constants listed previously is given in figure 2. The compari-
son between the difference solution shown in this figure and the’exact
solution of equation (1) is seen to be good. As a matter of interest,
the solution is also shown in this figure that is obtained by the use
of the parabolic end-ordinate derivative which involves only three
successive ordinates. The agreement in this case is seen to be quite
bad. H equations (2) and (3) had been used, on the other handj the
difference solution (in this case for Wn+l) would correspond to that

given for the cubic end-ordinate derivative.
/

Recurrence Matri.XEquation for Response of

m Airplane in a Gust
.

Jn order-to help the reader,to obtain a perspective of what is to
be covered in this section, the following basic phases of the analysis
are given:

(1) The assumptions are stated.

n

.

(2) The coordinate system and displacements are defined.

(3) me aerodmtic lift and moment are defined.

(4) The normal andtorsionsl dynamic loadings (inertia forces,
aerodyncuuicforces, and fuselage forces) on the wing are derived”

(5) The equ?tions df elastic deformation - wing vertical motion,
wing rotation, and fuselage bending - sre given.

(6) The dynamic loadings on the wi~” are transformed into
difference equations.

(7) me equatiOns of elastic deformation and the difference
equations for loading are combined to give the recurrence matrix
equation for response.

t

~ succeeding sections the initial response is determined, the
method for evaluating the gust forces is show, and the metho? fqr
computing the loads and stresses is indicated. .

—-— ——. ..— — .. ——-
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Assumptions.- In this analysis an,attempt is made to obtain the
simplest and most direct solution.to the problem with a minimum of
simplifying assumptions. The case treated is that of an airplane hav~g
au essentially straight wing and penetrating a gust of known structure.
The tail is considered to penetrate subsequently the same gust as does
the wing. The assumptions’madesxe as follows:

Assumptions pertaining to elasticity and airplane motion:

(1) Theusual assumptions of engineering beam theory are made.

(2) The fuselage is free to pitch and move vertically. The portion
of the fuselage in front of the elastic axis of the wing is assumed fo~
convenience to be rigid. The portion of the fuselage rearward of the
elastic axis is assumed flexible, and the elastic deflection is assumed
to be given by a single modal function...

(3) The tail is assumed rigid.

Assumptions-pertainingto aerodynamic forces:

(1) Aerodynamic strip theory applies. !l?’hree-dimensionaleffects,
however, may be taken into account approximately by means of over-all
correction.” Some such corrections are indicated.

(2) The gust force and forces due to vertical and pitching motion
are the only tail forces considered. Other forces of known character
may be included, however, if desired.

(3) f@ro_C. for@s on the fuselage are neglected.

Coordinate system and displacements.- Position on the airplaue is
denoted by sm orthogonal.system of axes. The origin is at the inter-
section of the wing elastic axis with the plane of symmetry of the
airplane: the w-sxis runs positive upward, the x-axis runs along the
fuselage positive in the rearward direction, and the y-axis runs span-
wise. The wing semispan is considered to be divided into six, not
necessarily equal, sections, with a station point at the middle of each
section. (See fig. 3.) More or fewer stations could be chosen, but it
is believed that six is a fair compromise between the amount of labor
involved in setting up a solution and the accuracy-desired. The interval
between stations is designated by the number of the station at the out- ~
board end of the interval. Station O is located near the wing root and
generally may be located where the fuselage intersects the wing. In this
way the concentrated forces of the fuselage are allowed to act through
station O. The other five stations are then located in any convenient
manner so as to fall at concentratedmass locations or at points which

.. . ..-..——..——.—.-.—.=. . ..-—— .-. ..-- —— -—. —..—___ ..._—_. .—,. ..



12 NACA TN 2060

represent the average of distributed massesj station 5 keing nearest
the tip. The total mass within a section is assumed to be concentrated
at the station point, and the average~eomet~ choqd,
~ ~ ~aK@Y. ~ this way the
wing is assumed to be a beam subject ~ o ce “onsa and as
such will have a linear moment variation between each station. The

further assumption is made that the & variation is ltiear between

each station. With these assumptions for the EI variation smd con-
centrated load locations equations for deflection at each station
point may be derived (appendix C) by direct analytical treatment.

The displacements of the cross section at each station of the wing
–A

are given as the deflection of and rotation about the
as shown in figure 4. The fuselage displacements are
and are g~ven by the equations:

o

Wf = w(o) - (p(o)x.

for the forward section and

Wf = w(o) - q(o)x +

for the rearward section. The function Ill

wing elastic sxis
shpwn in figure 5

(11)

(M)

as the fundamental
mode of vibration of the fuselage and tail assembly~ when the fuselage
is considered to be clamped as a cantilever beam at the elastic-axis
location of the wing, sad is given in terms of a unit deflection at

the &chord position on the tail. With this function to represent the

elastic deformation of the fuselage the deflection and angle of attack
of the tail is found with the aid of equation (12) to be

.
Wf(%) = w(o) - (p(o)% +5

dwf

1
%=-~

1

x=%

= (p(o)- Ml

where

0

(13)

(14)

,

.

4

———— .—— — .—— --
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Aerodynsmic lift and moment.- Betore going into the details of the
analysis it is felt worthwhile to define and describe the nature of the
aerodynamic forces to which the wing is subjected. These forces
originate from two sources: they arise directly from the gust ericoun-
tered, and they arise from the ensuing airplane motion. The equations
for the aerodynamic lift and moment that develops are herein set up in
a convenient form on the basis of work given in references 1 to 4. In
these investigations various methods for separating the lift forces .
have been used, but the particular method for separating these forces
is not importat so long as they are taken into account properly.

.
In the present paper the aerodynamic lift and moment are considered~

to be composed of two parts: one part, designated as the lift or
moment due to circulation,which includes all lift forces or moments
exclusive of aerodynamic inertia effects and the other part, which is
due solely to these inertia effects. These lift forces and moments csn
be resolved into the force systems acting on the airfoil as shown in
the following sketches: -

Forces due to circulation

I&tia force and moment

The force L= is the lift force developed by the gust. All the other
forces occur-as a result of motion of
well as the gust force, are given for
the equations: For the forces due to

n-t

the airfoil. These forces, as
an interval Z of the spsm by
circulation,

Lg =ilAY@czu
J o ~v(t - 7)dT (15)

J
t

Ll = mAfiPcZU
o

. . -. —.,. . .—. —- ... ._ >.-., __ _______ _... . .... .-.____._ .——..———.. ..—.. .. ___ ..
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mA3’cp2C2
$=~ti (17)

and for the inertia force and moment,

.~=~~f+(~--a)] ~ (1.8)

“(19)

where
.

mA factor which can be used to introduce over-all compressibility
and aspect-ratio corrections; in this paper the factor iS

assumed to be given by

p+:-

1 -a lift function which denotes the growth of lift on an airfoil
following a sudden change in angle of attack

t lift function which denotes the growth oflift’on a rigid
airfoil entering a sharp-edge gust

The functions 1 - @ and ~ and the correction IIIAare estab-
lished as follows. In reference 5, approximate equations are derived
which give the lift-coefficientform of the growth of lift on a finite
wing followin-ga sfiddenchange in angle of attack or due to the penetra-
tion of a sharp-edge gust. The equations may convenientlybe considered
as the product of a factor, which may be regarded as a lift-curve slope,
and an unsteady lift function, designated by 1 - 0 for the function
due to the single-of-attackchange and by ~ for the function due to
the sharp-edge gust. These unsteady lift functions are shown in
figures 6 and 7 and are given by the following equations: For
the 1 - @ functions

(1- @)A=~=l- 0.283e
-0. 5kos

(I- 0)A=6 =1- ().361e-0*31s

I(20a)

(20b)

(1- @)A=m=l - o.165e -0”045s _oo335e-o.300s (20C)

.

.

—. .—
. .

——- —— _— —— _
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and for the ~ functions

-o.558s -3.20s
‘A=3 = 1 - 0 ● 679e - 0 .227e

**=6 = 1 - 0.4J+8e-0”290s - ().272e-0”725s- ().~~3e-3”00s
,.

ijj=m=1 - o.236e-O”O~s - o.513e-0”3@s - o.171e-2”J*2s

* =1- 0.500e
-o .130s

A= w
- O.~Oe-s

(21b)

(21C)

(22)

(21a)

Equations (21) are based on equations of reference 5; whereas equa-
tion (22) is the ~ function that is suggested for wings of infinite
aspect ratio in reference 3. Inspection of equations (20) shows that
the Q function for aspect ratios 3 and 6 is given by a single
exponential term. It is probable that the @ function for higher
aspect ratios, say 10.and even 20, may also be given to a sufficient
approximation by a single exponential term. Therefore, the assumption
is made that in general @ may be represented by an equation of the
form

Interpolation, for example, of the ‘curvesin figme 6 shows that
the @ function for aspect ratio 10 might be approxtiated by the
equation:

OA~10
= ()$41e-0”3s (24)

The analysis does not necessarily limit O to a single exponential
term. Other terms could be added with some increase in labor, but the
degree of refinement obtained is not expected to add much to the over-
all accuracy of th,esolution.

Although the functions given by equations (20) to (22) are known
to approximate the true functions quite well over a large range

in s
()

S=zt, the ~ functions given by equation (21) do not
co

vanish, as they should, when t = O. When used in the computational
procedures given hereinafter, these functions, therefore, -e to be
taken as zero when t = O. Another point to note is that the variable s

,

... ... -..—.... .. ._ :._ __—. .. . .. . .. _— .._. .- __ _.. _ ______ .__. ,_— .. . -—__ _.._ __ ___ .. .



16 NACA TN 2060

is given in terms of a reference chord co; thus this variable as
applied to the wing is different in general> from the ~ariable as
to the tail.

applied

Examination of the values of lift-curve slope> which were stated
to be present in the equations taken from reference 5) reve~s that they
may be approxtiated with good accuracy by the product of 27cand the

often-used aspect-ratio correction A for steady incompressible

flow. b the present paper it is assumed that compressibilityand
aspect-ratio corrections can be made by replacing this aspect-ratio

correction by a compressible aspect-ratio correction defined by At :12,

where A’ = A~=~ and by multiplying this correction by the Glauert-

Prandtl Mach number correction
&

to give the product mA. The
M2

procedure then for taking into a~count three-dtiensional and compressi-
bility effects in the present analysis is to determine mA from the
forward speed and aspect ratio of the wing and to use the 1 - @
ma ~ functions, equations (20) to (24), for the aspect ratio Which
is nearest that of the wing.

Some word of explanation of equation (16) might be worthwhile at
this point. ‘fhe O(t -T) function is associated with the lift forces
which are due to the wake. Without this term the equation would yield
the steady lift correspondingto the instantaneous values of angle of
attack and vertical velocity. H equation (16) is integrated by parts
and the conditions are stipulated that W, tijq) ~d @ ae ~1 zero
at t = O, the following equation may be found:

Ll r-@o-:( &~@+= 13c2aow- (1 - @o)pcz+ + “pc2u1,

where j3 has been introduced as a
parameter defined by the equation

B:

pt
w~’(t- T)dT - ~czu / @(t - T)dT -

forward-speed

rnA@

do

(25)

and aspect-ratio

(26)

.

.

I

“

.

— —..— —.
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With reference to equation (23),@o and do in equation (25) would

have the values

@o = al

60 = =Jal

The form of L1 given by equation (25) is presented because-this form
is more convenient to use in the yresent analysis.

For this analysis t“hetotal,lift and moment acting at the elastic-
axis location are desired.. For the present, the total iift L and
moment M of the forces due to circulation are found; the inertia
force and moment are to be treated”separately. Summation of all the
lift forces due to circulation &nd summation of the moments of these
forces about the elastic axis gives the desired equations for the aero-
dynamic lift and moment acting on the airfoil over an interval Z as
follows: ,

that
wing
that

L=Ll+L2+Lg

17

(27)

(28)

The loading on the wing.- The normal.and torsional dynsmic loads
are held in equilibrium by the elastic restoring forces of the
may be found by considering sll the aerodynamic and inertia forces
act on the wing. The mass situatedat any station (see fig. 4)

can be shown to have an inertia normal force equal to

-m* + me~

and am inertia torsional moment about the elastic axis equal to

m& - mk?~

If the aerodynadc” forces and moments (see equations (18), (19), (27),
sad (28)) are added to these inertia loadings, the total normal and
torsional loadings on the wing at each station are found to be given; ,
respectively, by the equations:

P = -m~+me~,<+L +L3

q.me~-
()

mk2~+M- ~-aL3+Ml

—.... . .. . . .. . .. . . —.—__ ._ ..—. —. ——-._-. ..—..-,.—— .- .- . ..— –— =.. ——... . ._—.. _ -
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*

.

The terms L3 and Ml ordinarily would appear with

lift and moment vslues but are treated separately so
combined with the structural mass terms.
and (19), the loading equations become .

P=-=+=+

—*.
q=mew-

–Z2~

the aerodynamic

that they can be

where

( I-cpzc2
m= Dl+—

4 )

Ifuse- is made of equations (18)

+L (29)

+M (30) ;,

The terms appearing with the structuralmass quantities in the defini-
tions of .fi,~e, snd @ are the terms which are cowonly associated .

with apparent mass effects.

The value of the shear forces @ and the moment Mf transmitted . a
to the wing by the fuselage can be found in the following manner: From
equations (11) and (12) the vslues of the inertia loading on the forward
and rearward sections of the fuselage can be shofi to be given, respec-
tively, by the equations:

Pf =
[

-mf ;(0) - 6(0)X] (31)

Pf = -m@o) -
1

@(o)x+ 5W1 (32)

Integration of these inertia loadings over the length of the fuselage
and addition of the aerodynamic tail load 2Lt give the value of the
total load transmitted to the wing; one half of this load is designated
by Lf and is assumed to act at station 0, the other half being con-
sidered to act through the corresponding station on the other half of
the wing. Integration of the moment of the inertia loading about the
elastic-axis location and addition of the moment -2xtLt of the tail
forces give the total moment due to the fuselage; one half of the
moment is designated Mf and acts at station O. The vslues of Lf

.*

.

—.— ~ .-.— ——__ ——
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r

and Mf thus found cam be given by the equations:

Lf = -MI;(0) + lt#(0) - M3~ + ~ (33)

Mf =M2ti(0) - M4~(0) + M~~ - xtLt (34)

where the Mf ‘s are considered to be generalized masses defined as
follows: –

—

Xt
M2=~

f
mfx dx

Xn

M4=:
r

‘t mf#dx
Xn

\ (35)

The generalized mass constant M6, although not appearing in equations (33)
or (34), is included in this group because it occurs in a,subsequent part of
the analysis. In the derivation of equation (34), the aerodynamic moment

1

of the tail about the tail ‘-~ chord position is neglected since it is

considered to be small in comparison with the value ~Lt. The lift on
the tail Lt can be found by application of equation (27) to the tail
surface. In this case the O function appropriate to the tail should
be chosen and the values of displacement w and q should be replaced
by wf(xt) and ~, the values of deflection and angle of attack at .

— —--- -—--- -.-— --..--.—.-..—-----~— . ... ——.- - —-——_— —__ . . .._
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the tail ~-chord position. These values are givenby equations (13) .

and (14).

Matrix equation of equilibrium.- The pro~lem of computing the
response may be considered to be one of the determination of the deflec-
tion and rotation of a besm which is subjected to normal and torque
loadings.. b differential form, the bending md rotation~ displace-
ments are related to the normal and torque loadings by the well-known
expressions:

(36)

(37)

where in this instance p and q are the loadings per unit length of “
beam. ti addition to these two equations which are considered to apply
to the wing, an equation for computing the elastic deformations of the
fuselage may be found; this-equation may be fou?idin the following manner.
The rearward part of the fuselage is considered to be a cantilever beam
subjected to the inertia loading given by equation (32) and the tail
force 2Lt. If equation (36) is applied to the fuselage and use is made
of equations (12) and (32), the following equation for fuselage bending
results:

.

.

a2 %1
‘bx2E1fsF= -I+(o) - 1~(o)x +“iwl + 2% (38)

in which Lt must be treated properly as a concentrated load and If
is the bending moment of inertia of the fuselage. Since Wl represents ‘ ‘
a vibration modal function, the following relation exists:

where w ““is
tion (38) may

the frequency of vibration associated with WI. Equa-
therefore be written

&ll&l@71 = -mfp(o) - Q(o)x + Ewl] + 2Lt

.

.

——.—— .- -..—— ——
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Multiplication of this equation
‘between O and xt resuits @
bending

f
through by WI and integration
the following equation for fuselage

(39)

M6 are defined by equations (35).where M3, M5, and

Equations (36), (37), and (39), when the loadings given by equa-
tions (29) snd (30) are considered, are seen to be rather involved
integro-differentialequations but describe completely the motion of
the airplane. !lhe”problemis to find functions w, T, and 5 which
satisfy these equations and which satisfy both the boundary conditions
and the initial conditions.

The problem of finding the w and q functions may be simplified
considerablyby reducing the rather complicated equations of motion to
a simplified and systematic algebraic form. !l?hefirst step (see
appendix C) is to replace the differential equations (36) and (37) for
wing deflection and wing rotation by
equations:

I_llI--A w

[II I
Bq

the foliowing stiple matrix”-

(40)

(41)

The matrices in these equations are defined in appendix C (see equa-
tions (C22) and (C23) and equations [C29) and (C30), respectively) and
have been derived on the basis that the displacements along the ~emispan
are given at six stations. -

Equations (b)
are now combined in
follows:

and (41) and the fuselage deflection
a single matrix equation of the form

[1
000

[1OAO

O 0 [B~

.

0

P

q

coefficient 5
indicated as

(k?)

This form is chosen becau-seit will be useful subsequently. With the
notation given in appendix A, equation (42) may be abbreviated to the
form;

.

.

.,

-- —.-.— --- .- –-— ...---- . . .. _.. _____ .. . ... .. -. —.–_ _- .._-—_. —.—..— .— ___________—___. . ..
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.
(43)

This equation may be regarded as the loading matrix equation of equi-
librium; it relates the loadings to the displacementsby linear simul-
taneous equations. The boundary conditions are automatically satisfied
when this equation is used because they had to be taken into account.

[1 [1when the submatrices A md B were derived. Only the initial

conditions remain to be satisfied and these are treated separately in a
subsequent section.

Transformationof the loading equations into difference form.-
The loading equations are now simplified by replacing the time deriva-
tives by difference equations: If equation (5) is used to replace the
derivative in equations (29) and (30) the values of the loading at
the nth time interval are found to be ,

Pn .-e5(2wn - 5wn-1 + 4wn-2 ‘wn_3) ‘~(29n - Xn-1 “~n-2 - Qn-3) ‘%

(44) .

— _&2
qn=m:(2wn - 5wn_l +4wn-2 ‘wn-3) - ~(29n - ~n-1 + %n-2 - 9n-3) + %

(45) .

expressions
~a (28)). of

The values Ln and Mn are found by determining the
for Ll, ~, and

‘~ att=nc (see equations (27)

these L1 is the most complicated, since it (see equation (25)) involves

three unsteady lift integrals of the Duhamel tyye. Fortunately, however,
a rather simple recurrence relation cau be developed which allows the
calculation of the value of these integrals at a given time interval
directly from the value at the previous time interval. This derivation
is presented in appendix D and is made possible because the Q function
is of an exponential form. (Where the @ function is given by more
than one exponential term, a recurrence relation for each term maY be
written.) From the derivation in appendix D, therefore, the value of
the three integrals at the nth time interval may be given as follows:

,

.

3

—— ———— -.. ——
.
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,. where

Fn=e ’76 Fn-l + gWn-l + g’~n-l

in which g and gf are defined by equations (As) in appendix A.- With
this expression to replace the value of the integrals in equation (25),
the value of Lln may

Lln >=

be written

With the use of difference equation (4), this equation may be trans-
formed finally into the form:

%. = down + dlwn-l + ~wn-p+ d3wn-3 + do’~n + dl’qn-l +
u

d2’qn_2 +

where the dls
(17), and (26),

(47)

d.3’w-3 + Fn (48)

are defined in appendix A. Likewise, from equations (4),
L2m maybe written

u

(
m2 11% _L2n = —
24e )l@’n-l + 9%-2 - @n-~-

H Lln, I@n,’and the value Lgn of the gust force at t = nc are

introduced into equation (44.),the value of p at the nth time interval
can be shown to be given by

Pn = Vown + ~lwn-l + ‘2wn-2

V3’9n-3 + ‘n + ‘gn

the equation:

+ ‘3wn-3 + ‘O‘Pn + vl’~n-l + ~pf’?n-p+

(49)

where the ~ts are coefficients’whichare given by equations (A3) in
appendix A. In a similar manner, the equation for q (equation (45))
can be reduced to the form ‘

% = ‘Own + ‘lwn-l_+ ‘2wn_2 + ‘Swn-s + ‘O‘Qn + VI‘~n-~ + V2‘9n-2 +

‘ (a - ~)l?n+ (a - ~)LgnV~~9n-3 -t (50)

where the V:s are given by equations (A4) in appendix A.

\

..— ... ..________.+- . .._—._ ..
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The value of aerodynamic lift acting at the tail ~-chord ~ is

found most convenientlyby applying equation (49) to one-half of the
tail surface. This application is made by modifying the q coeffi-

cients as follows: The mass value m is’set equal to zero, ~ is
-1

taken as ~, c is replaced by et, and BcZ is replaced by ~t, defined

as the forwsrd-speed and aspect-ratio parameter of the
equation:

In addition, w
the tail given

and q are
by equations

the value of Ltn is found

%n
= fow(o)n + flw(o)n-l +

replaced by the deflection
(13) and (14). With these
to be

tail by the

(51)

and rotation of
substitutions

f2@)n-2 +f3w(0-3 +fo’~(o)n+

fl’p(o)n-l + f2’q(0)n-2 + fs’v(o)n-s + Z()% + ~l~n-1 +

“

.

“

where

Ftn = e-~te Ft~ ~ + jw(o)n-l + $’~(”)n-l + ~an-l (53) “

%3tn
is one-h&M the tail gust force at t =ne and the ffs and J’s

are defined by equation (A7) and (All), respectively, in appendix Ad

With equation (52) and difference equations
and (34) for Lf and Mf and equation (39) for
be reduced readily to the following form:

Lfn=Yow(0)n + ylw(0)n_l + y2w(0)n_2 + ~3w(0)n-3

71’9(0)n-l + 721T(0)n-2 + 73’~(0)n-3 + ?lOan

—
‘28n-2 + 73bn-3 ‘Ftn ‘Lgtn

(5)Z equations (33)
fuselage bending may

+ 70fg(0)n +

+ Tlbn-l +

(54)

.

.
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Mfn=pow(0)n+ WIW(0)n_l +V2W(0)n-2 + V3w(@n-3

wl’9(o)n_l + v2t9(o)n_2 + w3’9(@n_3 +F&

i@n-2 +P3%l-3 -%%n - XtLgt
n

O =roW(0)n +rlW(0)n-l +r2W(O]n_2 +r3W(0)n-3

rlfq(o)n-l + rp’q(o)n.p+rS’T(o)n-s + ~o~n

22~n_2 + 33~n-3 + Ftn + %tn

+ V(J’T(”)n+

,.
+ D15n_l +

(55)

+ ~o’(p(o)n +

+ Flbn:l +

(56)

where the 7’s, pls, and rts are given by equations (A8) to (AIO) in
appendix A.

The complete set of loading equations as well as the fuselage
bending equation are now available in difference form. Equations (49) .
and (50) apply at each spanwise station and in addition the ‘value
of Lf and Mf must be introduced at station O. The coefficients q,
V, y, and so forth are seen to involve only the physical properties of
the airplane structure, the forward-speed and aspect-ratio parameters
given by equations (26) and (51), certain constants derived from the
unsteady lift function, and the time interval., The time interval c
that is chosen should be fairly small in comparison with the natural
period of the fundamental mode iribending of the wing. To serve as a
guide an interval chosen near 1/30 of the estimated period of vibration
of the fundam~ntal mode appears to be quite satisfactory. Of course,
some caution should be observed in the choice of this interval if the
airplane is near a critical condition where some mode other than the
fundamental may predominate. For example, if the airplane is flying
near the flutter speed, the characteristicfrequency of the response gay
be near the natural,torsional frequency.of the wing. The time intervsl
should be modified accordingly. .

Recurrence matrix equation for response.- Equations (49), (50),
(’54),md (55) for loading, equation (56) for fuselage bending, and the
equilibrium equation (,43)may now be combined to give the recurrence
matrix equation for response. lh order to simplify the process of
combining these equations, only the abbreviated or symbolic form of the
matrices which occur are used. The definitions of these matrices are
given, unless otherwise stated, in a complete group in appendix A.

Application of equations (49) and (50) to each of the spanwise
stations snd of equations (54) and (55) to station O leads to a set

—.———----- _.— ———e.. ---. — —- ——— —.-———.-—— --— .—— -- —— -—--
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of loading equations which may be put in the matrix form given by the
following equations:

where

IIFn=e . ‘7GlFln-l + [gllwln-l+[gl l’qln-l

(Ft)n = e‘Yte (Ft)n-l + W(o)n-l + 3’~(o)n-l + &

(58)

(59)

(60)

.

,+

.

\ .

.

—. ..-— —. ——— .—.———
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., Equations (57) and (~8).and equation (56) may now be combined to
form the following matrix equation:

o

P =

q
n

0“

.

.

lr!llWI
[d [d

Iiq [Vo] [Voj

1k2iLIt
[’21 “ii Ii :

k] M 14~-a

-1

+

1-1

(61)

— ---—- --—---- -.. ..+...—.—.— ———.-..—~.— --.-——— --.. —-— -—’-. —— ----- -——– — —.
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For simplicity, this equation maybe abbreviated to the form:
.

5 -

w [1+s
3

T
n-2

5

w +

T
n-3

[1‘1 U+S2

n-1

u IR F + ig

n

(62)

where

(63)

and the matrix
II
xg n is defined in the section entitled “Derivation

“

.,

of Gust Forces..”

Substitution of equation (62) in equation (43) gives

8

w +

Y n-3

6

w [1=S(’J

‘?Jn

. [1+S2[1+S1

n

[1c
n-1

[R]llFl+lzglln (64) - .

.
With the use of the notation

[Fl=p] -[%1 (65)
.

.

————— —-—.— — —..—— —— -—- -——-
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and

lQln =

In-1

[1
+ S2

5

w
[1

+s
3

‘?
n-2 ‘?

equation (64) may be written simPIY .

In-j

[1
D w

9 n

H+R (66)

Multiplying through,by the reciprocal.of ID1 gives finally the
equation

-(67.)

(68) .

This equation gives the displacements that apply at time n in terms
of the displacements that occurred at several preceding values of time
(see equations (63) and (66) for the definitions of l~ln and lQln .

From equation (68) the complete response of the airplane can be -
computed once the character of the gust is lalown. The matrix of gust-
force values Zg ~ can be determined by the procedure given in the

section entitled “Derivation of Gust Forces.” The initial conditions
(treated inthe following section) areused toobtainttiee successive
initial sets of the displacements. With these sets of d~placements
the next set maybe obtainedby ap~lication of equation-(68). With the
newly found set and the preceding sets of displacements, the next set
may then be found, and so forth, until a sufficient time ,historyof .
the displacements is found from which maximum loading conditions may be
determined.

. . ..
The reason for using the difference form of the derivatives as

given by equatiQns (4) and (5) might now be given. Equation (64) may

. .

.. —-_—.._.:._.-. .—.- .. . .._—.—. ._ . . . ------- ______ _____ ~._. ___ _____ ..__



30 NACA TN 2060

be considered a differential equation, since the wtrix [c] contains

the spanwise derivative matrices [A] and [B] and maybe likened to

the differential equation which relates the load to the deflection for
a beam. The unlmowns are the deflections at time n. The right-hand
terqs correspond to the loading, the first term being the only one
which is not known since it contains the unlmown deflection. The sub-
sequent inversion of the matrix [D] leads to, in effect, the solution
to this differential equation and, in the be- ~~ogY~ corresponds to
the integration of the loading to obtain the deflection. When n~erical
methods are used, the deflection may be computed with good accuracY by
integration of the loading. On the other hand, if ‘thedifference equa-
tions which applyat a interior ordinate had been used, the matrix [C]
would have appeared as an operator on one of the known deflections on
the right-hand side of the e@ation. Effectively, its operation would
be to differentiate a known deflection, corresponding in the bes.m
analogy to the attempt to obtain the load which caused a given deflec-
tion. This process, however, csmnot be done with accuracy when numeri-
cal methods are used because of the difficulty encountered in the form
of small differences of large numbers. The difference equations which
apply at an outer ordinate ehd, consequently,lead to an integration
process, therefore, have to be used.

Derivation of the Initial Response

As has been mentioned, some initial values of deflection are
needed before equation (68) can be used. This section shows how these
values sre obtained. The airplane, just before gust penetration, is
considered to be in level flight, and all displacementswhich follow
are given relative to this level-flight condition. The initial condi-
tions are that the vertical displacements, vertical.velocitY, wing
rotation, and angular velocity sre all zero. The gust force can be
shown to start from zero and, therefore, by Newton’s second law the
additional initial.condition can be established that the acceleration
must be zero at the stsrt of the response. These conditions can be
satisfied, and the beginning of the response can be found by means of
the snalysis which follows.

The initial response is assumed to be given in terms of four SUC- ‘
cessive ordinates, denoted by W-2) W_l~ Wo) and Wl; the WO ordinate

is considered, as in the case of the damped oscillator, to locate the
origin of time. The first and second derivatives at the wo ordinate
are given by equations (8) and (9). By virtue of the initial conditions
(the vanishing of the deflection, velocity, and accelerations at t = O),
the ordinate wo and the derivatives “givenby equations (8) and (9)
must be zero; therefore, the ordinates w-2 and W_l are found to be
related to the ordinate ~ by the following relations:

. .._— — —.–——-
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v_2 = -8w1

w_l = -WI

These relations are general and must apply

(69)

(70)

for deflection and rotation
at each of the spanwise stations and for the fuselage deflection as well;
that is, the displacements at t = -2e must be minus eight times the
displacements at t = e, and the displacements at t = -~ must be the
negative of those at t =’e. Substituting these conditions in equa-
tion (64), taking n as equal to 1, and using the condition that the
displacements are zero at ‘t = O give the follo’
terms of the displacement at t = 6. alone:

‘ing”matrixequation in

I

‘g , (71)
--L

The term IIF1 is zero and therefore does not appear in this equation.

Solution of this equation gives the values of the displacements that
occur at. t = 6 (n=l).

The three sets of initial displacements required to proceed with
equation (68) are thus known: the set of deflections found at t = c,
the zero set at t = O, and the set at t = -e givenby equation (70),
or simply the negative of the displacements which were found.at t = c.
In the actual case no displacements are present at t = -c, but these
displacementsmay be regarded as being of a fictitious nature the only
purpose of which is to allow the step-by-step evaluation of the dis-
placements to be started easily.

Derivation of Gust Forces

The matrix Eg n which appears in the response equation (68)

is derived as follows. From equation (15) and the notation of equa-
tion (26), the total
time inverval may be

gust force acting.over a station section at-the nth
given by the equation

(72)

\
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The integral in this expression is also of the Duhamel type and since
the ~ function is expressedby exponential terms (see equations (21)),.
the “integralmay be evaluated quickly by a method similar to that
developed in appendix D. The procedure of computing”the gust force
by this equation and then the response is not recommended, however,
since a complete response evaluation would have to be made for ,each
gust considered. Ilnsteadthe procedure recommended is to compute the
response due to a sharp-edge gust; then with this response the response
to auy gust may be found directlyby superposition.

Thus for the case of a sharp-edge gust, equation (72) reduces
“simply .to

‘gn = f3c2v*n (73)

where ~n is the value of the * function at t = ne. This equation
when applied to each of the spanwise stations leads directly to the
matrix equation for gust force:

Colovo ““

c121V1

C2Z2V2

=E3n=~ C3Z3V3 ~n

C4Z4V4

C5Z5V5

(74)

If the gust is uniform in the spanwise direction, the v’s in this
equation will all be equal.

In a similar manner, one-half the gust force acting on the tail
due to a sharp-edge gust may be shown to be

where the gust gradient is assumed to be the

is the value of the ~ function for the tail

(75)

same as for station O and ~tn

. This eauation and eaua-
tion (74) may now be combined to give the desired matr~x ~g n as’

follows:

.

.

.

.

0

.

.__—— - - —— ——.—. -.—.
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o

0

0

0

0

0

33

(76)

.

In the application of this equation it
that L~ does not begin to act until

should be kept in mind
the tail stats to penetrate

the gust. The time interval at which penetration starts may be taken
Xt

as the interval nearest to the qusntity ~.

Computation of Loads aid Stresses

Once the time history of the displacements has been found from
equation (68), the normal or torque loading on the wing ca be found
with little additional work. If the notation of equation (66) is used,
equation (62) may be written

(77)

This equation shows that the loading matrix 1P may be found by

adding an easily computed matrix to the matrix IQ!, the value of which
will have already been determined in the
loading matrix IPI. is remembered to be
and torque loadings, and either of these
independently of the other.

.

response calculation. The
defined in terms of the normal
loadings may be found

The loadings thus found are considered to,be applied statically,
and the stresses are then found by ordinary static means. Since the
loadings can be computed for any value of t’tie,the complete stress

—..—- -. .—.— .–——.-
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history of any point in the structure may be computed. In general, the
maximum stress at different points in the structure is expected to
occur at different times. Some guide as to the probable time of
occurrence of the most setierestress may be had, however, if the
computed wing deflection is observed. It is likely that maximum stress
occurs in the rage where wing bending appears to be most pronounced.

The acceleration of any point in the structure
desired, with the aidof equation (~).

COMP@AT’IONAL PROCEDURE

may be found, if

The principal results of the analysis presented in the previous
sections are summarized herein in a step-by-step form. Only those
steps which actually have to be performed when a determination of.
structural response for any airplane is
order to conform with standard aircraft
second units throughout is recommended.

The steps are as follows:

Preliminary steps:

being made are listed. In
practice the use of inch-pound-

(1) The wing semispan is divided into six sections and a station
is located at the middle of each section (see fig. 3). The sections are
proportioned in any convenient m~er so that certain stations will
fall at concentratedmass locations, such as engines or fuel tanks.
Station O is located nesr where the fuselage intersects the wing and
station 5 is located near the tip. The properties EI, GJ, fi,E,

and ‘ti- are then computed at each station.

(2) From the EI, GJ, and Xi values dete~ne the P&@ Ed ~,
matrices by the method given in appenti C.

(3) Compute the gust-force v~ues at the successive time intervals
for both the wing and the tail. (See section entitled “Derivationof
Gust Forces.“) The ~
or (22) for the aspect
tail, respectively. A
in the neighborhood of
mental bending mode of

functions used are taken from equations (21)
ratios which are nearest to those of the wing and
time interval that appears satisfactory is one
1/30 of the estimated natural period of the funds- <
the wing.

.

.

.

.

.

——-
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The recurrence equation:

.

(4) With the quantities determined in steps (1) snd (2), determine
the matrix elements giwen by equations (A3) to (A5) at each of the
spanwise stations.

(5) CoWute the -fuselageand tail coefficients given by equa-
tioris(A8) to (All). (See definition of Ml, ~, M3, M4, M5, and M6

given by

(6)

and (5))

[1e
, and

.-
equations (35).)

With the use of the coefficients determined in steps (4)

set up the following matrices:

‘[1

p]> Fl], F21~ ~~~ pj~
w . These matrices are defined in appendix A and for the

most part are found from simple diagonal matrices of the coefficients
determined in steps (4) and (5). The form, for exsmple, of the ~S]
matrices is illustrated in table 1 with randomly chosen numbers. All
elements which sre not shown are zero. It may be of interest to explain
briefly the significance of the various terms that appear in the matrix.
In order.to facilitate the explanation the matrix has been partitioned
into several submatrices. The terms in the upper left-hand box are
associated with wing bending and the airplane vertical motion; whereas
the terms in the lower right-h&d box are associated with wing torsion
and airplane pitching. The terms along the two.subdiagopals serve to
couple together the bending and twisting action. The terms in the
first row and first column are associated with fuselage bending. The
omission of certain terms in the matrix will lead to the matrix which
applies to the more simple type,of aircraft motion. For the case, for
example, in which only wing bending and vertical motion are to be
considered, computation of only the terms which make up the upper left-
hand box is sufficient. .

(7) Determine the reciprocal. of the rDl matrti ad set Up the
following matrix equation:

where

H
Q=
n

...—-.__—-...-...___

[1
s>

-+.. -.—

8

w.= [!I-l lQln

b

w

‘T’

.. . . .

[1+ S3

n-2

-—— —.————.—--

(78)

uI+R F+ig

1-3 n

—. ...—. —-—_ _ ___ —__.-—. —--
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.

in which

.

[1
F =e

n

In these eqwtions the matrices containing b, w, and (p are displace-
ment matrices and are defined in apyendix A. The matrix IFI takes

into account the forces which develop due to the “wake effect,”

and Zg is the gust-force matrix which is derived in step (3).

Equation (78) is seen to give
in terms of the displacements
n- 2,snd n-3.

The initial response:

(8) By use of the
which apply at n = 1,

[[1
D

the displacements
which occurred at

that occur at time n
the times n - 1,

matrices given in step (6) and the gust forces
set up the following matrix equation:

(79)

The term ~11 does not appear in this equation because it is zer~.

.

(9) solve equation (79 ) for the displacements. Any convenient
method, such as the Crout method (see reference 6), may be used. The
displacements found will be the value of displacements that apply at
t,=corn=l.

The response:

(10) The response may now be found by successive application of
equation (78). The response at n = 1 has been found in step (9);
the response at n = 2 is next t’obe determined. The values of the
displacements in the n - 2 term of the response equation are all
taken to be zero (initial condition), and the values in the n - 3 term
are taken as the negative of those found in step (9). The gust forces
to use are those which apply at n = 2. The deflections that apply
at n = 2 are then found by matrix algebra. For convenience the column
matrix IQI is evaluated first, =d then multiplication of this column

.

.

.

-.——
.--—— —.——— ----- -— .—.——— --
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[1matrix by the reciprocal of the D matrix gives

atn =2. With the newly found deflections at n
tion~ at n = 1 and n = 0, the deflections at n
and so forth. This process is continued until the
to be the most pronounced.

Wing loading:

(11) With the deflections known, the value of

the deflections

= 2 and the deflec-
= 3 canbe found,
wing bending appears

wing loading in
bending or in torsion canbe computed directly from equation (77). The
stresses at any point can then be computed from the wing loading by
ordinary static means. Since the loading may be computed at any value
of time, the complete stress history of any point on the structure may
be yomputed.

EWLE

As an illustration of the method of analysis given in the present
paper, the response of a typical two-engine airplane due to a sharp-
edge gust is determined. For brevity the fuselage is assumed rigid
and only vertical displacement and wing bending.are considered. The
weight variation over the wing semispan and the equivalent-weight
concentrationsare shown in figure 8. W this figure are shown also
the station locations and the interval covered by each station section.-
The solution is made for a forward velocity of flight of about 210 miles
per hour and a gust velocity of 10 feet per second. In tables 2, 3,
and 4 are listed, respectively, the various physical characteristics
and the factors which come from the unsteady lift function, the values
of the ~ function and the gust-force matrix, and the matrti elements
that are required for the solution (steps (1) to (~)). The @ function
for an aspect ratio of 6 was chosen (see equation (20b)); and the ~ func-
tion for an aspect ratio of infinity (equation (2,2))was used.

The [A] matrix as computed from the values of A and EI
listed in table 4 is shown in table ~(a). In the computation of
the ~ values shown in table 4 for station 0, the fuselage was treated
as a concentratedwing mass. This treatment is allowable since the
fuselage is assumed rigid and further saves the work of computing
the Y values (see equations (A8)). The [[AI - [Sd ] or [D] matrix,
which in this case applies”only to bending smd vertical displacement,
is shown in table 5(b). The equation which is formed
(step (7)) and which involves the reciprocal of [D]

r]and R matrices is shown in table 6. The’equation
initial response (step (8)) is shown in table 7. ,

from equation
~d the ~Si]

for computing

(78)

the
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The solution to these equations is showm in figure 9 in which
deflection in inches is plotted against spanwise station points for
various intervals of time. For clarity the deflections for the odd
intervals have been left off. l%om these curves the consequent wing
bending and the manner in which the airplane is swept upward by the
gust canbe seen. The time histories of the loads (equation (77))
that occim at each of the spanwise stations are shown in figure 10.
These curves indicate the presence of some second-mode excitation in
the response. The stresses that occur at stations O, 1, and 2 are
shown in figure 11. The presence of second-mode excitation is not
readily discernible from the stress curves.

DISCUSSION

A method for computing the stresses and structural action of an
airplane flying through a gust has been given. The method is based on
aerodynamic strip theory, but over-all corrections for compressibility
and three-dimensionaleffects cdn be made as is indicated by a suggested
correction procedure. Some tail forces are included in the analysis
and others might equally well be included if their character is known.

The analysis as given is general enough to include the wing bending
and twisting flexibilities and the fuselage flexibility.

.
In a good

many cases that may be considered, however, the last two of the flexi-
bilities may prove to be of negligible importance. Some investigators
have indicated (see reference 1) that unless the forward speed of the

.

airplane approaches the flutter or divergence speed of the wing, the
torsional deformations do not have to be included. Likewise, in cases
in which the fuselage is rather stiff, the effect of fuselage flexibility
on the response may be rather small. In such cases in which either or
both of these flexibilitiesmay be ignored, the analysis is, of course,
simplified and shortened. The ex~ple presented in the previous section
illustrates this point. In the present state of understanding of’gust-
response analysis, enough information is not available to indicate
definitely when and when not to include the various flexibilities of
,the aircraft structure. The tialysis in the present paper may provide
a useful means to assess their importance. The extent, for example,
to which coupling exists between wing bending and wing torsion in sny
particular case may be seen by comparing the displacements obtained from
the coupling terms with the displacements obtained from the noncoupling
terms.

Both the symmetrical and antisymmetrical types of gusts can be
handled by the analysis given in the present paper. In general, the
symmetrical gust is expected to produce the most severe stress condition,
and therefore only the matrices which apply for a symmetrical case have

— —.——
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been given.. These matrices were derived by using the boundary condi-
tion: for the symmetrical deformation of a free-free beam. The case
of an antisymmetrical gust can be treated by replacing these matrices
by the ones which apply for the antisymmetrical deformation of a free-
free beam. The case of a general unsymmetrical gust can be handled by
first breaking the gust into two parts, a symmetrical part and an anti-
symmetricalpart, and then treating each part independently.

It might be of interest at this point to compare briefly the
matrix method to a modal-function solution. One of the chief disad-
vantages of the modal-function solution is that the modes and frequencies
of natural vibration of the structure have to be computed in advance.
Then, a large number of integrals which involve these modes have to be
determined in order to set up the problem. In the present analysis
the physical properties of the airplane are used directly in the setting-
up of the problem. Further, in order to make the modal solution
practical the higher modes must be dropped and only the basic or funda-
mental modes can be used. Hence, the success of the analysis depends
to a large degree on how well single modal functions, one mode each for
bending and torsion, can represent the airplane distortion. In the
analysis of the present paper the distortions are found for ‘allpractical
purposes as the correct values at a number of spanwise stations, at
least to within the accuracy to which the aerodynamic and structural
parameters are known. Also, in this analysis, probabl the most
difficult operation is the inversion of the matrix LD~, which is
actually not a very involved operation, especially when done by the
quick and systematic procedure affordedby the Crout method (reference 6).

The present paper”indicates the methods for determining the
response ‘forboth a sharp-edge gust and a gust of arbitrary shape.
Probably the besf approach, however, is to compute only the res~onse
for a sharp-edge gust, since the response for any arbitrary ~st may
thereafter be computed by means of Duhamel’s integral. To follow such
a procedure would also save a great amount of “workin the evaluation of
the gust forces.

One of the important features of the method of analysis presented
is that it is not restricted to the gust problem. The approach used
may be used to treat other problems of a similar nature. The landing
problem can be handled by.stiply replacing,the distributed gust force
by the concentrated landing forces.. In the landing problem also, the
problem is set up much more easily since the aerodynamic terms do not
ordinarily have to be included. However, the landing problem in which
aerodynamic forces are included may be solved by this method if desired.
The approach used herein may also be used to solve the problem of the
release of heavy objects such as bombs. This yroblem could be con-
sidered the inverse of the gust problem; a load is released rather than

—.—-— ---
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encountered. Some maneuvering problems, such as the sudden deflection
of the ailerons, and a number of other transient problems might also
be treated by an approach stiilar to that giveh in the present paper.

CONCLUDINGRIWIMKS

A method for computing the stresses and structural
aircraft flying through a gust has been presented. The

response of an
method is based

on aerodynamic strip theory, but compressibilityand three-dimensional
effects can be taken into account approximatelyby means of over-all
corrections. The method takes into account wing bending and twisting
deformations, fuselage deflection, verticsl and pitching motion of the .
.airplane, snd some tail forces. A sharp-edge gust or a gust of
arbitrary shape in the spanwise or.flight directions may be treated.
A suggested computationalprocedure is given to aid in the application
of the method to any specific case.

The possibilities of applying the method to a variety of transient
aircraft problems, such as landing, are brought out.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Air Force Base, Vs., JanuarY 19, 1950
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APPENDIX A

DEFINITIONS OF MATRICES USED IN AI!JALYSIS

Far convenience in presentation, most of the matrices and matrix
elements that are used in the analysis are defined in this appendix.
The matrices are presented without derivations,but their origin should
become evident by a study of the analysis.

Matrices.- The various matrices that are used in the analysis are
defined as follows for the case in which the wing semispan is divided
into six sections: (The elements which are usedin the matrices are
defined in the subse&ent section.)

w(o)

w(1)

w(2)
Iwj -—

w(3)

W(4)

w(5)

Cp(l)

q)(2)

9(3)

9(4)

9(5)

(p(6)

.

. . .. .. ----- _____ . . .. ___ .-..+=..... .....—._. _____ . _...+____ .._ _____------ ------ ___
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p(o)

p(l)

II
T(2)

-p,=

P(3)

P(4)

P(5)

g(o)

9m
q(2)

91=
9(3) “
9(4)

9(5)

o“

Pi=: P

9

1[1A See appendix C

[1
B

)
.“ r“00

d

for deftiitions.

o-

p]= o [Al ()

O 0 [B]
1-

,.
_.::--—-
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fli(o)+7i .

.

+7i’

~i ‘(1)

Ii’(o)

Hvi’ =

-.

+ IJi

vi (1)

vi(2)

~i(3)

vi(4)

vi(~

vi ‘

vi‘(1)

vi’(2)

vi’(3)

vi(o)

—

[1vi =

~’(o) +

Hvi! =

Vi’(

..-.:

—- -—— –——-... . . ~—.— —..--- ..._. .__ —. —_________ _________ _ ____.
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I-1ri =

L .]ril =

l.]
-Si =

1

o

0

0

0

0
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L 1ri-OOOOO

00000]”

1

0

0

0

0

0

.

.

— .—.—— — —
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[mla- $=

‘1Xt

.1
1

[11=

i

)-c’ia To

()c
a- T1

(a

0

0

0

0

0

1
1

1

1
1

)%2

()a-~3

()a-i4”

()
c

a--
4,

11
0

rRJ= 1:1,[1]

PI b..

.

. —.—... —...-——— —z .-—...—- —.. . .- -–——. ———.._______
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[1e =

LJJ=

p’j=
3(0)

[iii =

[1g’ =

. .

;’(o)

LjoooooJ

g(1)

g’ (1)

-100000

$3(2) .

f3(3)

g(4)

t3(5)

!‘c

g’(2)

f3’(3)

g’(4)

g’ (5)

.

———— —
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Matrix elements.- The matrix elements which appear in the matrices
defined in the previous section are expressed fo~ convenience in terms
of the following conmon”factors:

)

‘o = -Yal }
(Al)

in which the last fOUr me associated.with the @ ~ction for the
wing. (See equation (23).) With these factors the elements that must
be computed at each spanwise station are as follows:

(%=-:(1 . )-@o)pc2 + J3C2do+ $.6

.

.

— .-—— .———...—. —..—__ _____ —. —.-.— —... ——.. —.—-_ -——— -.—__..
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.

(A3)

(A4)

g’ = 13cZee
-7e[u,o - 40.&:)l

—— .—
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The coefficientswhich must be computed for the fuselage and tail
are expressed in part in terms of the following common,

~t = $At@USt %0 =a~t

.

yt = $t ‘t. =-7talt

‘t. = 7t2alt.

factors:

1

(A6)

in which the last four are associated with the @
to the tail; Also used are the generalized masses
tions (35) and the.value 01 as given in equation

factors’the coefficients for the tail and fuselage

functions appropriate
given by equa-
(14). With these

are as follows:

(‘O=-i%-“to)’t+“t ‘to+%0’ )
f,= :(1 - “%&t

fp = ::Q - %o)%

1

(A7a)
.

f3 = &@ - “to)%

‘0’ =%? - ‘to)(xt + %t)’t ‘“’tP! - ‘to) -

*b%u g -
(

“1

““ C)(xt + &t)]+ &%%&t. + ;%0

‘1’ ‘-% - “%)(xt + &t)’t - +tct

fp, = *(l - %o)(xt + &t)Pt+ &%% .

(An)

f31 = -*p - %J(% + *t)Pt - :t.t
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- U())

>oua31 -
(&+ ~%e)(, +~t%)j-- *tcte,

-l-.%) (l+>te,),t+&tcte, “3
G(

-:(, - .%)(l+&te,)Pt -.*T%W

*(1-%o)(l+~tel)l% + +&..,,

.

ml
70 .-— + fo

~2

Ml
73=7+f3

2%
70” =~+ f~’

%2
71’ = -— + fl’

~2

72, . ~ . f2,
~2

M2
73’ =-—+ fs’

~2

.

(A7c)

1I

(A8a)
.

i

(A8b)

.

.

.

–.—...- -—–-
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,

%3 –
71 =—,+fl -

~2

4M3 .
72 ‘-— + fp

~2

M3 -
73=-#+f3

4M2.
b=~-xtf2

2M4
PO’ =-’= - Xtfo“

5M4
Iq’ = — - Xtfl‘~2

(A8c)

(A9a)

(A9b)

(A9c)

,

. . ..—.-.. -—.— -———___ ___ _.— . -., .,— —._. .— _. ..__ __ . ..-—____
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.

0

rO

rl

r2

‘3

f. I

rl’

r2’

r3’

al 3= .— +fo”
62

y + fo’=

% + f.ll=-—
~2

4M5
=—+fz~2

M5 -
=-—+f

~2 3 1
2%F. = -— + T() - CDf2M6
~2

(AIOa)

(AIOb) “

(A1OC)

*

(All)

.

—.—

.
..

.
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APPENDIX B.,

DERIVATION Ol?DIFFERENCE

53

EQUATIONS

In this appendix the parabolic and cubic difference equations for
the first and second derivatives of a function are derived.

Parabolic equations.- For the parabolic difference equation,
consider the function shown in figure 12(a). This function is assumed to
be replaced by the arc of a para%ola which passes through the three
ordinates a, b, and c. It can be verified resdily that such a curve
can %e given by the equation

The first and second derivatives of this equation at y = e are given
by the equations

.

(B2)

(B3)

These equations are the stsmdard difference equations for the first
and second derivatives of a function. The derivatives ,=e purposely
taken at the middle of the three ordinates because the resulting
equations are suitable for use in the simplificationof many problems.
If the derivative had %een taken at sn outer ordinate, the approximation
afforded would not be accurate enough to be useful.

Cu%ic equations.- The cu%ic difference equations may %e derived
in a manner similar to that for the parabolic equations. In this case
four successive ordinates are used. (See fig. 12(b).) The function
is replaced %y a third-degree curve which is given %y the equation

.
. .... . . —e .— . . . . .- .-.-—-. . -- —-.. s— .-.+. . ..-. —— _ .-. .-— —.. . . . . . . ..— ..— —— .—— —.— —. . .. . . ..-—. — . . . ----
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(I%)

Because of the increase in accuracy that results from the use of a
higher-degree curve, the first aud second derivatives maY be t~en at
an outer ordinate with an accuracy which is a%out equivalent to that
givenby equations (B2) and (B3). me deri~at}v~s at Y= 3C me

.

1dw =l.ld- 18c + 9b - 2a (B5)
G y.’~ 66

1&2w =2d- 5c+4’b-a

G y.’~ g’

If taken at the third of the fore”ordinates; the derivatives sre

(B6)

(B7)

Equations (B5) and (B6) are used in the derivation of the response
equation-for an airplane in a gust. Equations (B7) and (B8) are useful

in’the derivation of the initial response.

.—— . — —
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IICKPZATIONOF MATKGI EQUATIONS

In this appendti the matrti equations

Plb’1=H

(cl)

(C2)

symmetrical heniiingma twisting of a free-free beam under norml
torsional loads qre derived.

Bending.- In accordance with the assumptions made in this Taper the
wing semispan is considered to he divided into six sections with a station
pointat the center of each section (see fig. 3). The inertia force of
the mass and the aerodynamic force that develops over each section is in
turn assumed to be concentrated at the res~ective station potits. The
wing is thus effectively a beam he&.tig under S= concentrated loads and,
as such, will have a linearly varying moment letween each station. The
following general eqpation for the moment between the i and i + 1 station
may therefore be written:

M=al+biy

where

[1y(i) “y(i)
-—M(i +1).ai = l+~M(i) bki+l

1
!i=b~i+l [(—Mi+l)- M(ifl

in which y(i) is the abscissa to the i station.

(C3)

The wing is further assume~ to have a ltiear l/!EI variation
between stations with the correct value of l/EI at each station. This
tyye of variation would lead to an EI curve which follows very closely
the true stiffness curve of the wing and which of course has the correct

. . . ..— —.-—---—.---- -———..- ----——.—-.————- -——-——. -.——— ———
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values of EI at
therefore also be

where

each station.
written; thus,

I?ACATN 2060

A general equation for l@ my

[1 y(i) 1. Ci = 1+- l&T-~ EI(i+l) -

i

[~-&]di=&EI(i + 1)

With equation (C3) and eqxa.tion(C4) the well-known expression
relating de~iection to moment for a beam may be written

~aJ sE= (ai +Iqy)(q +diY)
dy2 ‘1 (C5)

The deflection nay be found most conveniently from this equationby use
of the engineering beam theorem which states that the deflection of one
point ona beam relative to the tangent of the deflection curve at
another point is equal to”the moment about the displaced point of the
M/EI diagram between the two yotits. In this case symmetrical loading
is being considered and therefore the boundary condition at the center
line is that the sloye must be zero; the deflection of each’station
relative to this point therefore may le readily computed.. Fortunatelyj
because of the convenient analytical representation of M/lII,these
deflections may be found by exact inte~ation. The deflection, for
example, at station 4 due to the M/EI variation between stations i
and i + 1 may be given by the expression:

J
y(i+l)

(ai+b&)(ci +diy) ~(4) -y]dy
y(i)

.

..-—. —— —— —–—. - -
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5’7

Consideration of all.the expressions of this sort leads to the total
deflection of each station relative to the wing center line. Born this
deflection the more useful deflection relative to station O can be
readily determined. The values of the deflection thus obtained tie
found to be exyessille by the following matrti eqyation:

ii(l)

;(2)

6(3)

;(4)

q5j

_ ~2

m(o)

a= a~ o 0 0

% %22 %3 0 0

a31 a32 a33 a34 0

akl ak2 a43 a44 -a~

a51 a52 a53 a54 a5:

M(0)

M(1)

M(2)

M(3)

M(4)

where the matrix elements are defined by the equations:

a41 = XO(X1 +X2 + X3 + X4) + ~12A1 +%1(X2 + 13+ k4)B1

(c6)

. ... - . . .. ---—-. ..-. ———___ ------ — -. --—--- -—R....-.—— . . . . .. ———— —

(c7~)

(C7b)
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.

a23 = X22C2

a33
‘2

= ‘2-C2 + ~2~3D2 + ~32~3

1

(C7C)
a43 = A22C2 + X2(X3 + ~4)D2 + A32A3 + k3k4B3

J
.

a53 . A22C2 +X2(X3 +L4 +A5)D2 +h32A3 +X3(X4 +~5)B3

a34 = X32C3

akk = ~32c3+ ~3~4D3 + @2.Q ! (c7a) “

a54 = k32C3 +X3(A4 +h5)D3 +A42A4 +A4X5B4

a45 = L42C4 ,

a75 = L42C4 + A4A5D4 + L52A5 1 (fJ7e) .
.

in which

7

AL. + I(0)

+
+l_IO

, I(i - 1)
121i

Bi=~
I(0) I I(0).—

3 I(i - 1) + 6 I(i)

> (c8)

ci=&
I(0) + 1 I(O)

I(i - 1) 12 I(i)

.

Di=~ I(0) ,+ I I(0)——
I(i - 1) 3 I(i) ‘

/
.

.— . . — — —.—
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+

F-
“+

2-
+
x’
+

<m
+

s’
+

+

0

Pi.

I-Q

II

0 0

0 0

0 0,

*
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Substitution of equation (C1.1)into equation (C9) gives

Multiplication

the equation:

1’1‘z% pqp]1’1 (C12)

through by the reciprocal of

T [FuEiJ’1’l=,’,

EI(0)
t

(C13)

“

This equation thus gives the loads in termG of the deflection of each
station relative to station O. In the case under consideration,however,
the wing is a free body capable of motion through space and therefore to ~
set up properly the equations of,motion the deflection must le given
relative to a fixed datum ltie.” This datum line is most conveniently
located
loads.

as the Tosition o“fthe wing prior-to action of the disturbing
Consideration of the following sketch

+
I ;

—— .+-l w
w(o)

— —
I

I
will show therefore that the following relation must exist:

.T=w - w(o)
r

Substitution of this equation into eqyation (C13) gives

& [Fiwi]-h(d=Ipl.

(elk)

(C15)

.

.

.

.

.
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‘[[1[]= ElH2-1To aid in the derivation is now written in the
~3

—
general form:

—

b~ b~ bl> %4 %5

%2 b22 “ b23 b24 325

%3 b23 b33 b34 b35

b14 b24 b34 b44 b45

I%5 b25 335 b45 b55 -1

(c16)

L -

Thus ~ith.this equation, equation (C15) may be transformed to the form:

.

where

i)ol I)u %2 %3 %4 %5

bo2 %2 b22 b23 b24 b25

303 %3 ~ b23 333 b34 b35

bo4 b14 b24 ’34 b44 b45

bo5 b15 b25 ’35 ’45 ’55
—

w(o)

w(1)

w(2)

w(3)

W(4)

W(5)

bo2 =
(- b12 +b22 + b23 + b24 +b2

2

~03 = ‘&3 + 323 + b33 + ~34 + ~3jl

bo4 = - 614 + %4 + ’34 + b44 + b4~

~()~ = -(j15 + b25 + b35 + ~45 + 352

p(1)

p(2)

P(3)

p(4)

P(5)

I
J

(C17)

(c18)

.

_________ _. ..__ ._.._
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Equation (C17) is noted to express all the loads except P(O) in
terms of the six deflections. An additional eqyation in which P(O) is
expressed also ti terms of the deflections may be established by use of
the condition that all.the loads acting on the wing semispan must add
up to equal zero; that is,

p(o) +y(l) +2(2) +2(3) +p(k) +p(s) =0 (C19)

This condition automatically satisfies the two boundary conditions that
the shear must be zero at the tip and center line of the wing. Thus if
the five equations represented by equation (C17) are added, and use is
made of equations (c18) anil.(C19),the following equation results:

boow(0) +bolw(l) +bo2w(2) +b03w(3) +b04w(4) +305w(5) =Y(0) (C20)

. .
where

boo =
( 1
- bol +bo2 +b03 + b04 ‘b05 (C21)

This equation may now be combined with e~uation (C17) to give finally

boo

bO1

bo2

bo3’

’04

905

bol

b~

%2

%3

%4

%5

~02

%2

b
22

b
23

b24

b25

~03

%3

b23

b33

b34

b35

bo4

%4

b24

b34

b44

b45

bo5

%5

b25

b35

b45

b55

w(o)

w(1)

w(2)

w(3)

T(4)

J(5)

l)(o)

p(l)

;(2)

P(3)

p(4)

P(5)

(C22:

This equation is thus the desired matrix equation which relates~he normal
loads to the deflection. H the squnre matrix is denotedby [A], the
equation may be abbreviated conveniently to the form

[11 I
Aw=p” (C23)

which is the form used b the text. (See equation (~O.)

.

—
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As an aid in computationalwork, a summary of the steps involved in
the determination of [A] is gtven to close this section:

(1) From the I values at the res~ective stations comyute the
coefficients given by equations (c8)

(2) With these coefficients determine the matrix elements given by
equations (C7).

. 11
These elements form the matrti H1 which is defined

by equations (c6) and (c9) -

(3) MfltipW @ ~1~ mtrlx hy the [~] matrlz, which is defined
by equations (C!1O)and (Cll). The result shouldbe a synnnetiicalmatrix:

this property serves as a very useful computational check.

(k) ~vert the
~[[H~~2]] matrix.

‘I’hismatrti should also be

symmetrical. (The Crout method (reference 6) serves as a rather quick
and useful means for performing the inversion.)

(.5)Add -the COIWUIS of the inverted Mtrti and place the negative
of these sums at the top of thetr respective columns such as to form a
new row of matrix elements. Then add these sums and place the negative
of the sum as the first matrix element of the newiy formed row. A new
column headed by this value is ,thusin the makiryj. Fill h the remainder
of the column with the respective elements of the new row; that is, the
appropriate values should be @serted to make the matrix symmetrical.
This final matiix is the desired [Al matrfi.

Torsion.-.For the torsional case the torque loads q are assumed.
to le concentrated at the stations just as in the case for the normal
loads p. Consideration then of the following example torque diagram

T(1)
T(2)

1 T 3)

f, 3sT 4)
T 5)

I

~(o)q(l)qf2Jq(3)q(4)q(5)

— —— - ———. .—--—”----- --—— .-. — .._ —___ ..—. —
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. will show that the followhg equations must apply:

q(o) = ‘ - T(l)
q(l) =T(l) - T(2)

q(2) =T(2) - T(3)

q(3) = Y(3) - T(4)

q(h) =T(4) - T(5)

q(5) =T(5)

.

,
(C24)

where T(i) represents the total torque present in the i interval. No
torque exists between the wing center line and station O.

To aid in the derivation, the assumption is made that l/GJ varies
linearly between stations. A typical T/GJ diagram betwe~n, say, the
i - 1 and the i station would appear as follows: ~

dq)llkomthe differential relation — . 2 the fact may le observed that
dy M’

the change in
of the T/GJ

an@e of twist between two stations is equal to the area
diagram between the two stations; therefore,

1 1

bhi- T(i) +T(i)-
q(i) - cp(i-l)=—

‘2 GJ(f.-l) GJ(i)
(C25)

.

.

—
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If the notation .

1

1 1
+—

J(i - 1) J(i)

is employed, equation (c25) may be written

z(i) = si~(i) - q(i - 1)]

65

(c26)

(c27)

Application of this equation to each of the syanwise stations gives the
following equations for T:

T(1) = jl~(l) -q(0)] .1
T(2) = j2~(2) - ~(1)~

T(3) = j3~(3) - CP(2)j
1 (c28)

Substitution now of these equations into equations (C24) gives the
desired equations relating the torque loads to the angle of twist. The
equations thus found can le given in the matrix form:

(p(o)

q)(l)

cp(2)

9(3)

q)(4)

9(5)

q(o)

q(1)

q(2)

‘1(3)

q(4)

CL(5)

(@9)

.-.—--—--—.——...-. .. . —.-— .—-. .- —- —-—.—.———___ . .. . . ... . . _._. ___ __________ _-.
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which can %e abbreviated to

[lm’1=14

I?ACATN 2060

(C30)

the form used in the test. (See equation (41).) Thus all that is
imcilved in the commutation of the matrix CB]is the evaluation of the
matrix elements by means of equation (c26).

.

————
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APPENDIX D

67

*

RECURRENCE EQUATION FOR THE EVALUATION

INVOLWING AN EXPONENTIAL

OF DUHAMEL‘S INTEGRAL

The derivation of a rather simple recurrence relation for the step-
by-step evaluation of the three unsteady lift integrals appearing in
equation (25) is presented. This derivation is made possible because
the kernels of the

From equation
O function may he

where

integrsls are expressible in exponintisl form.

(23) the first snd second derivative of.the
written

--xaJt
co -yt

h= - ‘kale = hoe
co

Y
.X2J

co

i. = - yal

;0=72%” ,

With these equations the three titegrals of equation (25) may be
combined conveniently into the following single integral denoted

‘t ‘ J’fo”c’w - Pope’u+ ‘o’c’z(~- W’je-7(t-’) “

(Dl)

(D2)

by It:

(D3)

.

- .——. . —...—.. . . —— . ___ ..... .. . _____ _____ __ ____ ..._T_ ._
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For convenience the notation

‘-=p.’czw-F.”-’O’C2ZMI:}
is titroduced snd thus equation (D3) becomes

J
t ‘y(t-T)

It = Ye d’r
o

or
-y-t t

I.=e r ye77 dT
b

Mathematically, the integral
represent the area under the
In accordance with numerical
to t may le divide? into a
The product of Y and eyT

NACATN 2060

(D4)

(D5)
JO

in this equation may he interpreted to
function given as a product of Y and e7T.
evaluation processes, the interval O
num%er of time stations of interval e .
may then be found at each of the time

stations and from these products the area under the curve may be deter-
mined in first approxhation hy the trapezoidal method of determining
areas. Thus, if the n time st%bion corresponds to time t, the
evression for It msy he approximated as follows:

L
-ync— 7G 72G y(n-1)~

ItXIn= ee Yle + y2e + ... +y e +~nep~ (D6)n-1
—

. does not appear since the initial conditions are used thatwhere Y

the deflection w and rotation q are zero at t = O, and therefore

‘o is zero. (See equation (D4).) More accurate methods, such as

Simpson’s method, could he used for determining the area under the curve,
hut because of the mna.11intervsl chosen the consequent increase in
accuracy is negligible. If the notation

Fn= ee
[

-yrleyle7G + Y2e
72E + + yn_le 1y(n-l)g

... (D7)

is introduced, equation (D6) may be written simply
.

.

.,

.

(D8)

.

.—— .—_. —
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If equation (D5) is eqanded similarly, only for sn upper limit
oft- C, the expanded result would be

By snalo~ with equation (D7), however,

J

(D9)

—

F r y2~ + 7(n-2)e-y(n-l)c ~ eye +y2e ... +Yn-2e
n-1 = ce

1 (D1O)
—

and therefore equation (D9)lbeeomes

A study of equations (D7) and (D1O) shows that
must exist:

2

(Dll)

the following relation

(D12)

NOW, if equation (D4) is used,to rewrite Yn and Yn-l in equations (D8)

snd (D12), the value of ~ may be given finally by the equation:

(D13)

(D14)

The ve..lue,of the uusteady lift integrals is thus given %y
equation (D13). As regards the snalysis given in the present paper,
Wn-l ~d ~n-l sre the values of deflection end rotation which have,

say, just been determined from the recurrence equ&ion for response.
The value Fn-l was slso established and therefore Fn can be deter-

mined as a definite qusmtity. The v~ue In is fius seen to be @ven

.

- ————.—— .––-—-—.-----.-——.—.—.._ . ..- .— —_
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in temns of the known Fn and in terms of Wn snd cpn which are the

next values to le evaluated from the recurrence equation.

,

—— —

.
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APPENDIX E

MATRIX IuEEPRA

71

This ap~endix is written for those not familiar with matrix notations
matrix methods. All the matrti algebra necessary for the understamiing
this payer is described hereinafter by way of examples.

Matrix definition.- Some of the lasic tyyes of matrices are illustrated
the following arbitrary matrices which are of the third order:

The column matiti

The row matrix

The square matrfi

The diagonal matrix

The identity matrix

12

2

1

-1

4

0

0

i

o

0

2

1

-1

-3

-3

2

-1

0

3

0

‘0

1

0

1

-2

3

0

0

-1

“o

o

1

-——.— .—. ———e.- .- —._..- . . . . . . . . . . _ . . . . . ___
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Element defMtion. - lkch of the terms that apyear in a matrix is
defined as an element. Its ~osition is usually denoted in a row by the
nwiber of terms from the left and in a column by the number of terms
from the top.

Matr5zcaddition.- The addition of two matrices produces a s~e
matrti. Addition is performed by simply add@ together corresponding
elements. For example,

[

2

1

-1

-3

2

-1

1

-2

3

+

4 -1 0

0 32

L“2 o -1 [

6 -4 1-

=1 50

1 -1 2

Multiplication of a matrti by a scalar number.- In the multiplication
of a matrix by a scalar number eveqy element in the matiti is multiplied
by the nuniber. For example,

Multiplication of a column matiti by a rowmatrti.- The product of
a colu.nmmatrtiand a row ma.trfiis equal %o the sum of the products of . .
the corresponiklngelements. For example,

L2 -3
II

42= (2x2) +(-3 xl)+[l+(-4~=-3 ,

Multiplication of a column matiti by a square matrix.- The multiplication
column matrix by a square matrfi produces a column wtrti. Coneiderof a

the following set of-three stiul.taneo& equations:

.
‘2Y1-3y2+Y3=al

Yl + 2Y2 - 2Y3 = a2

1

(El)

_yl_
J

y2+3Y3=a3.

——— -.——
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.

.

.

The procedure adopted ih matrix algebra is to write these eauations in
the matrti form

[

2 -3 i

1 2 -2

-1 -1 3

‘1
al

‘2 = a2

‘3 a3

where the multiplication of ‘the Iyl column matiix by each row in the

(E2)

square matrti produces the respective elements in l%e tat collmmmatiix.
(See multiTlicationof a column matitib yarowmtrti.)

In order to stiplify the presentation of an analysis, the symbolic
or abbreviated matrix form is used quite often. The symbolic form of
equation (E2) is stiply

[Ill IIMy=a (E3)

The determinationof la{by the multiplicationof lylby ~1 is
illustratedwiti arbitrazy values of y, say yl = 4, y2 = 5, and y = 6,
by the following equation: 3

~--- ;] : =1 la2 (E4)

(2x4)+(-3x5)+(1x6) -1 al

(1X4)+(2X5)+(-2X6) = 2 =

(:1x4)+(-1x5)+(3x6) 9 a3

Multiplication of a square matrti by a square matrix.- T!hemulti-
plication of two square matrices produces a square matrix. Multiplication
is perfomned by letting the multiplying matrix operate, as in ‘tiepreceding
section, on each of the successive columns in the matrix being multiplied
to produce corresponding successive columns in the product matrix. For
example, ‘

.-.. .-. —..-———. . ..— -----..—._.—___ .—-.._— ~. _ —... —.. ——_.. . _______ __
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Order of multiplication.- In general the commutativemultiplication
law of ordxy algebra does not hold tn matrix methods; that is,

~ IAll++lpl

Therefore, whenever the product of several matrices is indicated, these
matrices must be multiplied together without changing their order.

Matrti partitioning and,submatrices.-A matrix may be partitioned
or divided at will into smaller matrices. For exam~le, the left-hand
side of equation (E4) may be partitioned as folkws:

‘2 I -3 1-–+--–––:
~12_*
“1.

-1 I -1 3

4
.-

5 .

6

The matrices which are formed by the dividing lines are called submatrices.
These submatricesmay be treated as though they were elements when matrti
operations are performed. For example; with the notation

a=l-s IJ

1

b=
-1

[

2
c=

-1

II5d=
6

.

1
-2

3

the multiplication of the foregoing partitioned =trti is as follows;

.

.

.

s.,

>1

II I

4 8+ad
-–#1 .

?1 c d
4b + cd

.

.
..——.
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The reciprocal of a matrix and the identit,ymatrix.- I& ordinary

algebraic methods the formal operation involved in the.solution for x of “
the equation

is the multiplication through by the reciprocal of m; thus,

x=m -1-a

The same formal operation may be applied to matrti equations. For exsmple,
the solution for Iyl ineq~tion (E3) is simply

Iyl =[M]-l Ial

[]-I- is the reciprocal, or the inverse, of [M].where M

The reciprocal of a
either of the equivalent

matrti is found as the matrti which satisfies
equations

[M]-l[@ =[1]

[Ml [“I-l =[ll -

where [1] is the identity mati~. For equations (E2) sznd(E3), the
reciprocal of [MI is found as the matrix which satisfies the equation

[

2

1

-1

-3

2

-1

i

-2

3

i o

1

0

0 1 0

0 0 1
.

.

0

If this”eqmtionis con~idered in relationto equations (El), (E2), =d (E5),
the values bl, b2, and b3 would simply be values of yl, y2, and y3 which
Satisfy equation (El) for al & 1, a2 . (),am a3 = 0; cl, C2, ~ ~3 would
be the values

be the values

solutions are

for al = O, a2 . 1, and a3 . O; and dl, ~, and d3 would

for ‘al = O, a2 = O, and a3 = 1. For this example, the “

-.----———----- --— ..—. — ———-—--—————.—–— ——_..—...—..._ —- . ______________ ...
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.
..

The Crout method (reference 6) ~rovides a very quick and convenient
method for determining these solutions.

The determination of y by the oyeration LM]-l on a is illustrated
as follows.for a = -1, a2 = 2, and

1

[1
484

1 -1
E

7 “5

1 57

,.

a3 = 9:

-1 4

2 = 5

9 6

(En)

The operation performed by this equation canbe seen to be the’inverse
operation of equation (E4).

.

=.,

.

—— — .——.—.—- .—
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TABLE 1 -

ILLUSTRATION OF THE [s]MATRICES

——. — — ———
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I
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I
I

4

6

4

3

3
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3

2

2

.

I
3
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TABLE.2

b, in. . .
co, in. .
EIO
—, lb/in.
b3
p, lb/ft3

{

;- mph..
/Y in. gec

v, in./sec
c, sec . .
As, half-chords
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0.832703
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TABLE 3

v ORDINATES AND GUST-FORCE MATRIX

_—. —

EXAMPLE AIRPLANE

n

o
1
2.
3
4
5
6

-i
9
10~
11
12
13
14
15 .
16
17
18

(Equat~on (22))

o
.22105
.36744
.46716
.53741
.58888
.62830
.65980
.68534
.70840
.72820
● 74595
.76215
● 77707
.79086
.80373 ,
.81574
.82696
.83748

‘gII =120

— .—

17.8404

15.7552

12.1811

10.5295

8.77455

7.0196~

.

NACA TN 2060
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Figure 1.- Dumped oscillu~orand suddenly

applied force.
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figure 8.- Weight dis iribuiion and equivalent conceniruiions
for example +WO- engine uircrufi.
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Figure /2.- Funcfionul notation used in f..e derivuiion
of parabolic and cubic difference equations.
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